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The isothermal flow of an anomalously viscous fluid in a screw channel is investigated with 

allowance for circulation flow of the fluid and the side ribs of the channel. 

Non-Newtonian fluid flow obeying a power-law theological equation in the channel of screw machinery 

(extruders, pumps, etc. ) has been investigated under simple shear conditions with slip [i, 2] and under com- 

plex shear conditions [3, 4]. In these papers the friction of the fluid at the side ribs is disregarded, i.e., it 

is assumed that the velocity components and the effective viscosity of the fluid are invariant over the width of 

the channel and the radial velocity is equal to zero. Since the side walls of the channel can significantly affect 

the flow pattern in screw machinery [5, 6], it is important to investigate this problem in a two-dimensional 
s etting. 

For the solution of the problem we assume that clearances between the ridges of the screw and the cas- 

ing (Fig. la) are absent and that the depth of the screw channel H is much smaller than the radius of the casing. 

We can therefore work with a plane model of the screw channel (Fig. ib), and to facilitate the analysis of the 

fluid flow pattern we invert the motion, i.e., regard the screw as stationary and the casing as rotating with a 

constant linear velocity V 0. We consider the fluid flow to be steady, laminar, and isothermal. The motion of 

the material in the screw channel in this case is described by a system of differential equations including the 

equations of motion and continuity as well as the constitutive equations. This system must be closed by suit- 

able boundary conditions. In Cartesian coordinates the indicated equations take the form 

&, op + &~j (1) 
pv~ Ox; - -  Ox~ Ox; ' 

Ovl 0, (2) 
Ox~ 

(3) 

The solution of the sys tem (1)-(3) in the general  case poses a difficult task even with the application of 
modern computer  techniques and equipment. However,  it can be enormously  simplified by assuming that the 
velocities of the fluid are  invariant along the length of the channel (z axis), i . e . ,  that all derivatives of the 
velocities with respec t  to the coordinate z are  equal to zero.  

Before undertaking the solution of the problem, we formulate the slip boundary conditions. In t r ans -  
fe r r ing  the resul ts  of v i scos imet r ic  studies (simple shear) to a complex s t r ess  state we invoke the "common 
curve" hypothesis,  i . e . ,  we assume that in both simple and complex flow the slip velocity v w is described by 
the same equation [3] 

f3w('%) Tw (4) Vw~ ~rn 

In the complex stress state, however, the coefficient flw no longer depends on the shear stress ~-w, but on the 

tangential stress intensity T w at the wall. 
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Fig. i. Schematic representation of the screw (a) and 
its plane model (b), 
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Fig. 2. Profiles of the dimensionless 

fluid velocities w z (a) and w x (b) at x= 
W/2. i) Two-dimensional flow; 2) 

complex shear model. 

In light of the foregoing remarks the boundary conditions for the velocities Vz and v x at, for example, 

y = H are written as follows: 

v~ = Vo cos ~ + Pw(T,,,,) "~y~ 
/_i'm 

(5) 

Vx = Vo sin ~-}- [)-w(Tw) Txu /-/'~ 

The boundary conditions for the velocities with slip at the other walls are formed analogously. 

To solve the system of equations (1)-(3) the method of finite differences is used extensively in fluid 

mechanics. As a rule, this system of equations is not written in terms of the velocities and pressure, but in 

terms of new independent variables: the vorticity w, stream function ~, and velocity v z. When the slip effect 

is present in the fluid, the primary task is the derivation of boundary conditions for the vorticity w, because 

the boundary conditions for the velocity v z are given by expressions of the type (5) and those for ~ as in the 

no-slip situation. 

In deriving the finite-difference formula for the vorticity at the boundary we expand the stream function 

into a Taylor series in powers of its increment in the direction perpendicular to the solid wall and we make 

use of the familiar relation between w and r Then in the most general case [bearing in mind that v w = Vw(Tw, 

H)], with four terms retained in the Taylor series, the following equation is obtained: 

~o~=- -  §  § h " 

In th is  equat ion  v w m u s t  be i n t e r p r e t e d  as the  ve loc i t y  ca lcu la ted  a c c o r d i n g  to  e x p r e s s i o n s  of  the type  (5), 
fo r  e x a m p l e ,  v x. The s u b s c r i p t s  1 and 2 r e f e r  to the nodes of the comput ing  gr id  a t  the wal l  and at a d i s t a n c e  
h f r o m  it  equal  to the gr id  s t ep .  

If,  on the  o the r  hand,  Eq. (4) is t aken  as the  law gove rn ing  the s l ip  ve loc i ty ,  then  the e x p r e s s i o n  fo r  the  
v o r t i c i t y  at the  bounda ry  is obta ined in the f o r m  

[ 3 ( . 2 - - ~ )  (% J 3Vo (7) 
o h m - -  9h2(l + 3[t~l/h) 4- 2(1._1_3[~1/h ) + h(1 .+_3~l /h  ) , 

w h e r e  fi = f lw(Tw)/H m.  

We have  so lved  the s t a t ed  p r o b l e m  on a B E S M - 6  c o m p u t e r ,  us ing  a FORTRAN p r o g r a m .  
flc ca lcu la t ions  we use  a fluid whose  ve loc i t y  obeys  the p o w e r - l a w  flow equat ion  

For the speci- 
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Fig .  4 
F ig .  3. V a r i a t i o n  of  the  d i m e n s i o n l e s s  v e l o c i t i e s  w z and w x o v e r  
the  width of the  s c r e w  channe l  at  the moving  b o u n d a r y  fo r  v a r i o u s  
va lue s  of the  d i m e n s i o n l e s s  p r e s s u r e  g r a d i e n t  u n d e r  s l i p  (sol id  
c u r v e s )  and n o - s l i p  (dashed c u r v e s )  cond i t i ons .  1) ~p = 0.293; 2) 
1.485; 3) 2.93.  

F ig .  4. D i m e n s i o n l e s s  va lue s  of  the  v o l u m e t r i c  flow r a t e  ;rQ and 
p o w e r  ~N v e r s u s  d i m e n s i o n l e s s  p r e s s u r e  g r a d i e n t  ~p. The n o m e n -  
c l a t u r e  is the  s a m e  as  in F ig .  2. 

n - - I  

( I ~  ' 2 
= ~Io - ~ - )  , 

(8) 

while  the  s l i p  r a t i o  flw(Tw) obeys  the law 

0 
[~w(Tw) = {b (T w - -  Tw) 

for T w ~  Ts, 

for Tw>~= (9) 

The o t h e r  p a r a m e t e r s  have  the va lue s  H = 0.005 m; W = 0.02 m; ~0 = 12~ V 0 = 0.1 m / s e e ;  n = 0.27; ~)0 = 1.52"105 
Pa .  s ecn ;  m = 2.5; ~-s = 4"5"105 Pa;  b = 1 .529 .10  -18 mm+5/N2see .  

F i g u r e  2 g ives  the  r e s u l t s  of the  c a l c u l a t i o n s  in the f o r m  of the  d i m e n s i o n l e s s  v e l o c i t i e s  w z = v z / V  0 (F ig .  
2a) and Wx=Vx/V 0 ( F i g . 2 b )  a t x =  0.01 m (in the e e n t r a l  p a r t  of  the  channel)  a n d t h e  va lues  of  the  d i m e n s i o n l e s s  
p r e s s u r e  g r a d i e n t  ~p = AzH/~-= 2.344.  The so l id  c u r v e s  c o r r e s p o n d  to f luid f low with s l i p ,  and the  d a s h e d  
c u r v e s  to n o - s l i p  flow. C u r v e s  2 in the  s a m e  f i g u r e  r e p r e s e n t  d a t a  for  the  c o m p l e x  s h e a r  mode l  of  [3] (wi th-  
out  r e g a r d  f o r  f luid f r i c t i o n  at  the  s i de  r i b s  of the channel ) .  

F i g u r e  3 shows the  d i s t r i b u t i o n s  of  the  d i m e n s i o n l e s s  v e l o c i t i e s  Wz and w x of the fluid at  the  u p p e r  boun-  
d a r y  ~ = y / H  = 1 a long  the width of the  s c r e w  ehmmel  as  a funct ion of  the  d i m e n s i o n l e s s  p r e s s u r e  g r a d i e n t  7rp. 
The in f luence  of the  s i d e  wa l l s  is  t a n t a m o u n t  to  the i n i t i a t i on  of s l i p  (for  s m a l l  g r a d i e n t s  =p) in the  u p p e r  c o r -  
n e r s  of  the  channe l  and then ,  as  ~p is i n c r e a s e d ,  g r a d u a l  e n t r a i n m e n t  of the e n t i r e  s u r f a c e .  I t  is  e v id en t  f r o m  
the f i gu re  tha t  the m a x i m u m  s l i p  v e l o c i t y  is  o b s e r v e d  in the  r e g i o n s  cont iguous  with the  s i de  f a c e s  of the  e h a n -  
ne l ,  and the m i n i m u m  in the  c e n t r a l  p a r t  of the  channe l .  

F i g u r e  4 shows the d i m e n s i o n l e s s  va lue s  of the  v o l u m e t r i c  flow r a t e  of the f luid ~Q = Q/VoHW and the 
p o w e r  c o n s u m p t i o n  =N = N/VoWr as  a funct ion  of the d i m e n s i o n l e s s  p r e s s u r e  g r a d i e n t  ;rp. It is  ev iden t  f r o m  
the f i gu re  tha t  the c o m p l e x  s h e a r  m o d e l  g ives  too  l a r g e  a va lue  fo r  the fluid f low r a t e  and too  s m a l l  a va lue  
fo r  the p o w e r  in both the  s l i p - f l o w  and the n o - s l i p  s i t ua t i on .  

The mos t  i n t e r e s t i n g  r e s u l t s ,  in ou r  op in ion ,  a r e  a f fo rded  by  the  7rN-= p c u r v e s  (Fig". 4). The p o w e r  
c o n s u m e d  by the  s c r e w  m e c h a n i s m  is  c a l c u l a t e d  a c c o r d i n g  to the  equa t ion  

l IE/ H Pl 

0 0 0 Po 

(10) 

It is  a p p a r e n t  f r o m  F ig .  4 tha t  i n i t i a l l y ,  as  long as  f luid s l i p  is  a b s e n t ,  the p o w e r  c o n s u m e d  by the  s c r e w  
m e c h a n i s m  i n c r e a s e s  with the  p r e s s u r e  g r a d i e n t  (i. e . ,  with d e c r e a s i n g  f luid f low r a t e ) ,  but  then ,  s t a r t i n g  
with a c e r t a i n  g r a d i e n t  ~p, f luid s l i p  is  o b s e r v e d ,  and the  p o w e r  con t inues  to g row with the  p r e s s u r e  at  f i r s t ,  
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and then begins to decrease. It is interesting to note that the drop in power with increasing value of ~p pro- 
ceeds far more slowly for the two-dimensional model than for the complex shear model. 

It is evident from an analysis of the foregoing results that, first, wall slip exerts a powerful influence 
on the performance characteristics of the mechanism and, second, the effect of the side walls in conjunction 
with fluid slip along the walls is very pronounced and must be taken into consideration in the calculations. 

N O T A T I O N  

m, n, T0, b,  rheological  constants ;  H ,  W, depth and width of s c r ew  channel; V0, c i r cumfe ren t i a l  ve lo -  
ci ty of s c rew r idges (velocity of upper  plate in the opposite direct ion);  ~ ,  angle of elevat ion of s c rew line; p, 
fluid density;  x, y, z, x i, xj,  Ca r t e s i an  coordinates ;  L, s c rew length; l ,  length of s c r ew  channel; i, ] = 1, 2, 
3; Wx, Xz, d imens ion less  fluid veloci t ies ;  Vx, Vz, vi, vj,  t rue  fluid par t ic le  veloci t ies ;  Vw, wall s l ip  velocity;  
~ ,  vort ic i ty;  ~, s t r e a m  function; 12, second (quadratic) invar iant  of s t r a i n - r a t e  t ensor ;  ~, effect ive fluid v i s -  
cosity;  T w, tangential  s t r e s s  intensi ty at wall; h,  s tep of computing grid; Q, vo lumet r ic  flow ra te ;  N, power;  
A z, p r e s s u r e  gradient  along s c r ew  channel; ~Q, ~p, ~N, d imens ion less  values of flow ra te ,  longitudinal p r e s -  
sure  gradient ,  and power; ~ = y /H,  d imens ion less  coordinate;  p, p r e s s u r e ;  P0, Pi, fluid p r e s s u r e s  at channel 
entrance and exit; ~ = ~0(V0/H) n, cha rac t e r i s t i c  tangential  s t r e s s ;  q ] ,  components  of s t r e s s  tensor ;  Ts, shea r  
s t r e s s  at which sl ip is initiated; TW, shea r  s t r e s s  at wall; fiw, s l ip rat io .  
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THERMAL CONDITIONS OF MAGNETOFLUID SEALS 

M. S. Krakov, V. B. Samoilov, 
V. K. Rakhuba, and V. A. Chernobai 

UDC 621.318.538.4 

Heat production in the working region of magnetofluid sea l s  is theore t i ca l ly  and exper imen ta l ly  
evaluated.  

One of the mos t  p romis ing  seal ing techniques for  applicat ion to rapidly  rota t ing s y s t e m s  is the magne to-  
fluid seal  (MFS). The MFS, whose working e lement  i s  a f e r romagne t i c  fluid (FMF), held in a p r e s c r i b e d  pos i -  
tion by a magnet ic  field, has s eve ra l  advantages over  the common contact  and noncontact  sea ls :  MFS opera te  
is a wide range of shaft  rota t ion speeds ,  have a low fr ic t ion torque and a long operat ing life [1]. 
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