TWO-DIMENSIONAL FLOW OF A NON-NEWTONIAN FLUID
IN THE CHANNEL OF SCREW MACHINERY WITH WALL SLIP

V. P. Pervadchuk, V. I. Yankov, UDC 532.542:532.,135
and V. I. Boyarchenko

The isothermal flow of an anomalously viscous fluid in a screw channel is investigated with
allowance for circulation flow of the fluid and the side ribs of the channel.

Non-Newtonian fluid flow obeying a power-law rheological equation in the channel of screw machinery
(extruders, pumps, etc.) has been investigated under simple shear conditions with slip [1, 2] and under com~
plex shear conditions [3, 4]. In these papers the friction of the fluid at the side ribs is disregarded, i.e., it
is assumed that the velocity components and the effective viscosity of the fluid are invariant over the width of
the channel and the radial velocity is equal to zero. Since the side walls of the channel can significantly affect
the flow pattern in screw machinery [5, 6], it is important to investigate this problem in a two-dimensional
setting.

For the solution of the problem we assume that clearances between the ridges of the screw and the cas-
ing (Fig. la) are absent and that the depth of the screw channel H is much smaller than the radius of the casing.
We can therefore work with a plane model of the screw channel (Fig. 1b), and to facilitate the analysis of the
fluid flow pattern we invert the motion, i.e., regard the screw as stationary and the casing as rotating with a
constant linear velocity V;. We consider the fluid flow to be steady, laminar, and isothermal. The motion of
the material in the screw channel in this case is described by a system of differential equations including the
equations of motion and continuity as well as the constitutive equations. This system must be closed by suit-
able boundary conditions. In Cartesian coordinates the indicated equations take the form
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The solution of the system (1)-(3) in the general case poses a difficult task even with the application of
modern computer techniques and equipment. However, it can be enormously simplified by assuming that the
velocities of the fluid are invariant along the length of the channel (z axis), i.e., that all derivatives of the
velocities with respect to the coordinate z are equal to zero.

Before undertaking the solution of the problem, we formulate the slip boundary conditions. In trans-
ferring the results of viscosimetric studies (simple shear) to a complex stress state we invoke the "common
curve" hypothesis, i.e., we assume that in both simple and complex flow the slip velocity vy, is described by
the same equation [3]

v = Pul®) Ty )

In the complex stress state, however, the coefficient By, no longer depends on the shear stress Ty, but on the
tangential stress intensity Ty, at the wall.
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Fig. 1. Schematic representation of the screw (a) and
its plane model (b).
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Fig. 2. Profiles of the dimensionless
fluid velocities w, (a) and wy (b) at x=
W/2. 1) Two-dimensional flow; 2)

i complex shear model.
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In light of the foregoing remarks the boundary conditions for the velocities v, and vy at, for example,

y = H are written as follows:

v, == Vycos ¢+ m ,

7" (5)

T
vy = Vosing -+ BulTy) Ty Hzntx” :

The boundary conditions for the velocities with slip at the other walls are formed analogously.

To solve the system of equations (1)-(3) the method of finite differences is used extensively in fluid
mechanics. As a rule, this system of equations is not written in terms of the velocities and pressure, but in
terms of new independent variables: the vorticity w, stream function ¥, and velocity vi. When the slip effect
is present in the fluid, the primary task is the derivation of boundary conditions for the vorticity w, because
the boundary conditions for the velocity v, are given by expressions of the type (5) and those for ¢ as in the
no-slip situation.

In deriving the finite-difference formula for the vorticity at the boundary we expand the stream function
¥ into a Taylor series in powers of its increment in the direction perpendicular to the solid wall and we make
use of the familiar relation between w and §. Then in the most general case [bearing in mind that vy = vy(Tw,
H)], with four terms retained in the Taylor series, the following equation is obtained:
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In this equation vy, must be interpreted as the velocity calculated according to expressions of the type (5),
for example, vx. The subscripts 1 and 2 refer to the nodes of the computing grid at the wall and at a distance
h from it equal to the grid step.

If, on the other hand, Eq. (4) is taken as the law governing the slip velocity, then the expression for the
vorticity at the boundary is obtained in the form

0 = — [M Wy J 3V, 7
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where 8 = By (Ty)/H™.

We have solved the stated problem on a BESM-6 computer, using a FORTRAN program. For the speci-
fic calculations we use a fluid whose velocity obeys the power-law flow equation
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Fig. 3. Variation of the dimensionless velocities w, and wy over
the width of the screw channel at the moving boundary for various
values of the dimensionless pressure gradient under slip (solid
curves) and no-slip (dashed curves) conditions. 1) T = 0.293; 2)
1.485; 3) 2.93.

Fig. 4. Dimensionless values of the volumetric flow rate 7~ and
power my versus dimensionless pressure gradient mp- The nomen-
clature is the same as in Fig. 2.
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while the slip ratio B,(Ty,) obeys the law

B ( ) { 0 for Tyy<<Tts,

9
b(Ty—71)  for Ty>Ts ®)
The other parameters have the values H = 0.005 m; W = 0.02 m; ¢ = 12°; V;, = 0.1 m/sec; n = 0.27; N = 1.52-10°
Parsect; m = 2.5; 74 = 4.5-10° Pa; b = 1.529-1078 mm*5/Nsec.

Figure 2 gives the results of the calculations in the form of the dimensionless velocities wy, = VZ/VO (Fig.
2a) and w —-VX/VO (Fig.2b) at x=0.01m (inthe central partof the channel) andthe values of the dimensionless
pressure gradlent Ty = A H/T=2.344. The solid curves correspond to fluid flow with slip, and the dashed
curves to no-slip flow. Curves 2 in the same figure represent data for the complex shear model of [3] (with-
out regard for fluid friction at the side ribs of the channel).

Figure 3 shows the distributions of the dimensionless velocities wy, and wx of the fluid at the upper boun-
dary ¢ = y/H =1 along the width of the screw channel as a function of the dimensionless pressure gradient -
The influence of the side walls is tantamount to the initiation of slip (for small gradients Tp) in the upper cor-
ners of the channel and then, as 7, is increased, gradual entrainment of the entire surface. It is evident from
the figure that the maximum slip velocity is observed in the regions contiguous with the side faces of the chan-
nel, and the minimum in the central part of the channel.

Figure 4 shows the dimensionless values of the volumetric flow rate of the fluid ng = Q/V,HW and the
power consumption my = N/V,Wr as a function of the dimensionless pressure gradient mp. It is evident from
the figure that the complex shear model gives too large a value for the fluid flow rate and too small a value
for the power in both the slip~flow and the no-slip situation.

The most interesting results, in our opinion, are afforded by the m— Tp curves (Fig. 4). The power
consumed by the screw mechanism is calculated according to the equation
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It is apparent from Fig. 4 that initially, as long as fluid slip is absent, the power consumed by the screw
mechanism increases with the pressure gradient (i.e., with decreasing fluid flow rate), but then, starting
with a certain gradient Tps fluid slip is observed, and the power continues to grow with the pressure at first,
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and then begins to decrease. It is interesting to note that the drop in power with increasing value of mp pro-
ceeds far more slowly for the two-dimensional model than for the complex shear model.

It is evident from an analysis of the foregoing results that, first, wall slip exerts a powerful influence
on the performance characteristics of the mechanism and, second, the effect of the side walls in conjunction
with fluid slip along the walls is very pronounced and must be taken into consideration in the calculations.

NOTATION

m, n, 1y, b, rheological constants; H, W, depth and width of screw channel; V;, circumferential velo-
city of screw ridges (velocity of upper plate in the opposite direction); ¢, angle of elevation of screw line; p,
fluid density; x, y, z, Xj, Xy, Cartesian coordinates; L, screw length; /, length of screw channel; i, j=1, 2,
3; Wy, Xgz, dimensionless fluid velocities; vy, vy, vy, e true fluid particle velocities; vy, wall slip velocity;
w, vorticity; ¥, stream function; I, second (quadratic) invariant of strain-rate tensor; 7, effective fluid vis-
cosity; Ty, tangential stress intensity at wall; h, step of computing grid; Q, volumetric flow rate; N, power;
Ay, pressure gradient along screw channel; g, Tps TN, dimensionless values of flow rate, longitudinal pres-
sure gradient, and power; ¢ = y/H, dimensionless coordinate; p, pressure; py, p;, fluid pressures at channel
entrance and exit; T = 1y(Vy,/H)R, characteristic tangential stress; Tij» components of stress tensor; 7g, shear
stress at which slip is initiated; Ty, shear stress at wall; gy, slip ratio.
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THERMAL CONDITIONS OF MAGNETOFLUID SEALS

M. S. Krakov, V. B. Samoilov, UDC 621.318.538.4
V. K. Rakhuba, and V. A. Chernobai

Heat production in the working region of magnetofluid seals is theoretically and experimentally
evaluated.

One of the most promising sealing techniques for application to rapidly rotating systems is the magneto-
fluid seal (MFS). The MFS, whose working element is a ferromagnetic fluid (FMF), held in a prescribed posi-
tion by a magnetic field, has several advantages over the common contact and noncontact seals: MFS operate
is a wide range of shaft rotation speeds, have a low friction torque and a long operating life [1].
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